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Spatial Patterns in Catchment Hydrology
Observations and Modelling

For many years now, modelling tools have been available to simulate spatially dis-
tributed hydrological processes. These tools have been used for testing hypotheses
about the behaviour of natural systems, for practical applications such as erosion
and transport modelling, and for simulation of the effect of land use and climate
change. However, so far the quality of the simulations and spatial process represen-
tations has been difficult to assess because of a lack of appropriate field data.

Spatial Patterns in Catchment Hydrology: Observations and Modelling brings
together a number of recent field exercises in research catchments, that illustrate
how the understanding and modelling capability of spatial processes can be
improved by the use of observed patterns of hydrological response. In addition
the introductory chapters review the nature of the hydrological variability, and
introduce basic concepts related to measuring and modelling spatial hydrologic
processes. This introductory material provides the conceptual and theoretical
background needed to move into this exciting area of research for a general
earth sciences/water engineering audience. The book demonstrates that there is
rich information in patterns that provide much more stringent tests of the models
and much greater insight into hydrological behaviour than traditional methods.

Written in an intuitive and coherent manner, the book is ideal for researchers,
graduate students and advanced undergraduates in hydrology, and a range of
water related disciplines such as physical geography, earth sciences, and environ-
mental and civil engineering as related to water resources and hydrology.

Rodger Grayson is an Associate Professor and Senior Research Fellow at the Center
for Environmental Applied Hydrology and the Cooperative Research Center for
Catchment Hydrology, both of which are in the Department of Civil and
Environmental Engineering at the University of Melbourne. His professional inter-
ests include research, teaching and consulting related to environmental hydrology,
the modelling and monitoring of water quality and quantity from research catchment
to continental scales, and integrated catchment management. He has published over
100 papers and reports in international and national journals and conferences, as
well as an edited book, several book chapters and this current book. He is an associ-
ate editor of Water Resources Research and the Journal of Hydrology.

Giinter Bloschl is an Associate Professor at the Institute of Hydraulics, Hydrology
and Water Resources Management of the Technical University of Vienna. His
professional interests include measuring and modelling spatial hydrologic pro-
cesses at a range of scales as well as engineering hydrology and water resources
management. He is an author of over 100 scientific papers and has received the
Schrodinger and Lise Meitner awards from the Austrian Science Foundation. He
is an associate editor of Water Resources Research, the Journal of Hydrology and
an editorial board member of Environmental Modelling and Software. He is a Vice
President of sections of both the European Geophysical Society and the
International Association of Hydrological Sciences.
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Runoff, Precipitation, and Soil Moisture at Walnut Guich

Paul Houser, David Goodrich and Kamran Syed

6.1 INTRODUCTION

The research presented here was undertaken at the Walnut Gulch Experimental
Watershed (30°43'N, 110°41'W) near Tombstone, Arizona, which is operated
by the Southwest Watershed Research Center (SWRC), Agriculture Research
Service (ARS), U.S. Department of Agriculture (USDA). The extremes in rain-
fall and temperature in this region lead to great spatial heterogeneity in soil
hydrological processes. Observations from a series of nested gauging stations, a
dense network of precipitation gauges, and remotely sensed soil moisture esti-
mates, in concert with specialised remote sensing, surface characterisation, and
numerical simulation have led to numerous insights into the nature, causes, and
effects of hydrologic spatial patterns in this semi-arid catchment. The nature,
representation, and interrelation of spatial rainfall patterns and their impact on
the spatial distribution of runoff and soil moisture is described. Additionally,
the representation of this spatial behaviour through the integration of observa-
tions in a distributed hydrologic model using data assimilation methods is
assessed.

6.1.1 Description of Study Area

The Walnut Gulch Experimental Watershed (Figures 6.1 and 6.3) was
selected as a research facility by the United States Department of Agriculture
(USDA) in the mid-1950s. Prior appropriation water laws resulted in conflicts
between upstream land owner conservation programs and downstream water
users. Technology to quantify the influence of upland conservation on down-
stream water supply was not available. Thus, scientists and engineers in USDA
selected Walnut Gulch for a demonstration/research area that could be used to
monitor and develop technology to address the problem. In 1959, facilities
needed for soil and water research in the USDA were identified in a United

Rodger Grayson and Giinter Bldschl, eds. Spatial Patterns in Catchment Hydrology: Observations and
Modelling © 2000 Cambridge University Press. All rights reserved. Printed in the United Kingdom.
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Runoff, Precipitation, and Soil Moisture at Walnut Gulch

States Senate Document (U.S. Senate Committee, 1959). The Southwest
Watershed Research Center in Tucson, Arizona, USA, was created in 1961
to administer and conduct research on the Walnut Gulch watershed (Renard
et al., 1993).

The Walnut Gulch Experimental Watershed (WGEW) is defined as the upper
148 km? of the Walnut Gulch drainage basin in an alluvial fan portion of the San
Pedro catchment in southeastern Arizona (Figure 6.1). Depth to ground water
varies from 45m at the lower end to 145m in the centre of the catchment. Soil
types range from clays and silts to well-cemented boulder conglomerates, with
the surface (0—5cm) soil textures being gravelly and sandy loams containing, on
average, 30 % rock and little organic matter (Renard et al., 1993). The topogra-
phy can be described as gently rolling hills incised by steep drainage channels
which are more pronounced at the eastern end of the catchment near the
Dragoon Mountains. The mixed grass-brush rangeland vegetation, which is typi-
cal of southeastern Arizona and southwestern New Mexico, ranges from 20 to
60 % in coverage. Grasses primarily cover the eastern half of the catchment,
while the western half is bush-dominated.

This rangeland region receives 250-500 mm of precipitation annually, with
about two-thirds of it as convective precipitation during a summer monsoon
season. The balance of precipitation falls during winter frontal storms of Pacific
origin (Figure 6.2) and potential evapotranspiration is approximately ten times
annual rainfall. The runoff in the ephemeral streams is of short duration and is
typically near critical depth (Renard et al., 1993).

Currently, eighty-five recording rain gauges, eleven primary catchment run-
off-measuring flumes, and two micrometeorological observation (Metflux) sta-
tions make the WGEW a valuable research location. During Monsoon *90 (July
23 to August 10, 1990), eight Metflux stations provided continuous measurement
of local meteorological conditions and the surface energy balance, and extensive
remote-sensing observations were made (Kustas and Goodrich, 1994). Figure 6.3
shows some of the monitoring equipment and gives an impression of the land-
scape.
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Figure 6.2. Monthly average temperature, rainfall, and runoff for the Walnut Gulch Experimental
Watershed.

127

127



128 P Houser, D Goodrich and K Syed

Figure 6.3. Mosaic of three photos of the
WGEW: (a) catchment landscape, with the
city of Tombstone, Arizona in the dis-
tance; (b) a large runoff measurement
flume; and (c) the Lucky Hills metflux site.
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6.1.2 Review

Many recent studies of hydrologic variability have shown that land surface
heterogeneity has a profound impact on hydrologic phenomena (Milly and
Eagleson, 1988; Pitman et al., 1990; Avissar, 1992). Spatial and temporal varia-
bility in meteorology (precipitation, wind speed, humidity, radiation, and tem-
perature), soils (hydraulic conductivity, porosity, water retention, topography,
and thermal properties), and vegetation (stomatal resistance, leaf area index,
albedo, and root depth) interact in a highly nonlinear manner to produce com-
plex heterogeneity in soil moisture, runoff, and evapotranspiration (Ghan et al.,
1997). Detailed analysis of surface observations have provided valuable insights
into the nature and causes of surface heterogeneity (Seyfried and Wilcox, 1995).
It is well established that variability in precipitation is among the most important
causes of variability in soil moisture and runoff (Ghan et al., 1997). However,
because soil moisture integrates the temporal variability of precipitation, knowl-
edge of the instantaneous precipitation distribution does not necessarily provide
a complete picture of hydrologic variability. The interrelations between the com-
plex processes causing hydrologic variability also change in time and space
(Seyfried and Wilcox, 1995).

Physically-based hydrologic models have great potential for helping to unra-
vel the complexities of hydrologic heterogeneity, by helping us to critically ana-
lyse the problem, organise our thoughts and data sets, and to test our hypotheses.
Modelling the impact of meteorologic, soils, and vegetation heterogeneity on
surface hydrology has taken two general directions: (1) spatially distributed mod-
elling that uses spatially distributed inputs of relevant soil, vegetation, and
meteorology to enable better prediction of hydrologic patterns; and (2) statisti-
cal-dynamical modelling approaches in which homogenous land patches are iden-
tified and modelled as a single unit. This facilitates the development of
probability density functions, that when combined with the physically-based
hydrologic equations, characterise the variability of the hydrologic system
(Avissar, 1992).

Numerous studies have investigated the nature and prediction of hydrologic
spatial variability at Walnut Gulch (Kustas and Goodrich, 1994; Schmugge et al.,
1994; Goodrich et al., 1994, 1995; Humes et al., 1997; Syed, 1994; Jackson et al.,
1993; Michaud and Sorooshian, 1994b; Houser et al., 1998, 2000. Generally, these
studies have shown that the highly convective, and therefore spatially variable
nature of precipitation, has profound impacts on the spatial distribution of soil
moisture and temperature, the production of runoff, and the partitioning of the
surface energy balance. The variability of soils and vegetation were generally
found to have a second-order modifying effect on the spatial variability imposed
by precipitation, and at high resolutions, surface temperatures and fluxes were
found to be strongly correlated with topography.

This chapter summarises the work on characterisation and simulation of
spatial variability of soil moisture and runoff in response to spatial precipitation
patterns at the WGEW. First, a discussion of patterns and characteristics of
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precipitation, soil moisture and runoff based on observations is presented in
Section 6.2. This is followed in Section 6.3 with a discussion of modelling and
spatial inferences of precipitation, soil moisture, and runoff.

6.2 OBSERVATIONS

6.2.1 Observed Spatial and Temporal Characteristics of Walnut Guich
Precipitation

Knowledge of spatial and temporal characteristics of rainfall is crucial for
better understanding this important component of the hydrologic cycle and to
represent it more realistically in rainfall-runoff models. Various spatial storm
characteristics which are considered important in runoff production of a catch-
ment include, but are not limited to, areal storm coverage, its intensity patterns,
direction of storm movement (Osborn, 1964), its position within the catchment
(Michaud, 1992), and the extent and intensity of the runoff-producing storm core
(Koterba, 1986).

There are three factors which generally limit the reliability of these computed
spatial rainfall measures. First, there are inherent limitations in the data-collec-
tion procedures. The raingauge design, technician experience, and digitising
methodology play important roles in establishing the accuracy of the data.
Second, WGEW rainfall is observed at points scattered over a finite area. The
interpolation techniques generally used to generate a continuous representation
from point data have limitations. Third, interpretation of computed measures
may differ depending on the interpolation method used. It is appropriate to
devote some discussion to these limitations before describing the observed spatial
nature of rainfall in detail because precipitation is such a dominant driver of
catchment hydrology at the WGEW (see also Chapter 2 for a general discussion
of interpolation issues).

In Walnut Gulch, rainfall observations from more than ninety gauges are
available (Figure 6.1b). These are standard weighing type gauges that record
the cumulative depth of precipitation continuously as a line trace on a revolving
chart driven by an analog clock. The chart completes one revolution in 24 hours
and remains in place for seven days before it is replaced with a fresh chart. These
charts are manually checked and inferred for starting and ending times of rainfall
events. To identify spatial rainfall patterns, the point observations must be trans-
formed to a relatively continuous field, which is achieved by using spatial inter-
polation methods. Several methods of interpolation are available and each has its
strengths and weaknesses which are thoroughly documented in the literature
(Myers, 1994) and discussed in Chapter 2, pp.26—45.

An analysis of Walnut Gulch rainfall data and a mathematically defined
synthetic surface showed that both kriging and multiquadric interpolation meth-
ods (Shaw and Lynn, 1972) such as splines, produce similar results based on
cross-validation residuals. Given these results, the multiquadric method was



Runoff, Precipitation, and Soil Moisture at Walnut Gulch

used here because it does not require a labor-intensive a priori definition of a
variogram or correlogram.

A total of 302 summer thunderstorm events that occurred in the period from
1975 to 1991 were analysed, 85 of which produced runoff at the outlet of the
catchment. An event was defined as a rainfall episode separated from other
rainfall episodes by at least 1 hour. The rainfall data from all 91 gauges was
discretised into 10 minute time slices and then used in the multiquadric inter-
polation process to estimate rainfall values on a 100 m grid covering the entire
catchment which were used to compute the storm areal coverage, position, and
movement at a range of subcatchment scales.

At the Lucky Hills catchment scale (< 5 hectares), the assumption of spatially
uniform rainfall was tested by making measurements with 10 recording and 49
non-recording raingauges, 9 tilted non-recording gauges, and 3 vectopluvi-
ometers for a range of events during the 1990 monsoon season (Figure 6.1c).
The data were analysed to: 1) assess the precipitation measurement uncertainty
due to gauge type, calibration, data reduction and placement; 2) assess the
impacts of wind on precipitation observations; and 3) evaluate the impact of
spatial and temporal rainfall variability on the estimate of areal precipitation
over the catchment.

A histogram of areal total storm coverage for the 302 events is plotted in
Figure 6.4a. Slightly less than half the total number of storms cover the entire
148 km? catchment. An event rarely delivers rain to the entire catchment instan-
taneously, but may affect large portions of the catchment over its entire duration.
The contrast between total storm areal coverage and within storm coverage is
illustrated in Figure 6.4b. The local nature and high spatial variability of these
convective storms is evident. About one-third of storms occur in the range of 30
to 50km’ and about half are greater than 50 km? with a maximum of 120 km?.
The spatial extent of storm cores was found to be even more limited. Out of a
total of 302 events, 53 events contained a high-intensity storm core (10 minute
intensity > 25mm/hr), of which about 25 % were in the range of areal coverage
of 2 to 3km?, 50 % ranged from 3 to 9km? and the remaining 25 % were larger
than 9 km? with a maximum of 34 km?.

It is also interesting to observe how these storms, on average, grow and
decay in time. To examine this, the average of areal coverage of all storms
for each 10 minute time step was computed from a common start time
(Figure 6.5). The dotted line is the result of averaging every storm whether
or not it reported any rain in a particular 10 minute interval (n was always
302). The rapid growth of the areal coverage of a storm and its recession are
shown in Figure 6.5. When only those events that reported some rain in a
particular time step were averaged, the first 1.5 hours was largely unchanged,
indicating that most of the storms last more than 1.5 hours. However,
beyond 1.5 hours, there is a sharp deviation, indicating that the longer dura-
tion storms have substantial spatial coverage (greater than 50 km?). When the
average rainfall volume in successive time steps was plotted in a similar
fashion, its shape was very similar to the areal coverage plot except that
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Figure 6.4. (a) Spatial storm coverage on an event basis. (b) Spatial storm coverage averaged for 10
minute time increments through storm duration.

its peak occurred at 70 minutes. This indicates that rainfall intensities typi-
cally peak in the first 1.5 hours of the storm even though the average storm
event lasts for 4.75 hours.

Due to the limited extent of runoff producing storm intensities and high
runoff transmission losses, the location of the storm core within the catchment
is also very important. An example is shown in Figure 6.6 for a storm that
occurred on July 30, 1989. The storm had two distinct periods of high-inten-
sity rainfall (Figure 6.6a). The first one occurred near the start of the event,
and was located near the catchment outlet (Figure 6.6b). This was followed by
a low-intensity period of about 90 minutes. The second high-intensity burst
then occurred, and was located near the head of the catchment (Figure 6.6c).
This example clearly illustrates that, in this environment, it may be difficult to
uniquely define a rainfall event using the arbitrary criteria currently utilised in
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Figure 6.5. Progression of average spatial storm extent within event duration.

Walnut Gulch data processing, as these two periods of high-intensity rainfall
are likely to have been two independent thunderstorm cells.

At the small-catchment scale, the intensive observations made at Lucky Hills
— 104 resulted in several significant findings. It was found that the range of
observed variation over the catchment was greater than the variation that
would result from total measurement error (i.e. even at this scale spatial varia-
bility exists). An example of a storm (August 12, 1990) exhibiting the largest
absolute variation in rainfall over the 4.4 hectare Lucky Hills — 104 catchment
is shown in Figure 6.7. In addition, geostatistical analysis indicated the presence
of first-order drift with corresponding rainfall gradient ranges from 0.28 to 2.48
mm/100m with an average of 1.2mm/100 m. These gradients represent a 4 % to
14 % variation of the mean rainfall depth over a 100m distance indicating that
raingauge location is particularly important if only one gauge is available. This
suggests that the typical uniform rainfall assumption is invalid at the 5 hectare
scale in regions where convective thunderstorm rainfall is significant. Spatial
rainfall variation at this scale is attributed to localised wind effects from down
drafts associated with the relatively random location of air mass thunderstorms
in relation to the catchment. The overall WGEW raingauge network depicted in
Figure 6.1b will not be able to resolve the rainfall spatial variations and patterns
at the 5 hectare catchment scale for storms such as those illustrated in F igure 6.7.
However, the density of the large area network is such that overall gradients in
rainfall depth of typical air mass thunderstorms are captured. This should allow
approximate estimation of the first-order drift noted for all but one of the storms
observed with the small area network at Lucky Hills. While it may be possible to
estimate gradients in rainfall depth with the large area network, rainfall maxima
or minima occurring between the gauges will not be resolved at the 5 hectare
scale. Spatial rainfall variation at this scale has important implications as testing
and validation of process-based hydrologic models are often conducted on small
research catchments using the spatially uniform rainfall assumption (single rain-
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Figure 6.6. An example of spatial and temporal separation of high-intensity storm cells. (a) Spatially
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increments for the event of July 30, 1989. (b) Intensity contours during 40-50 minute interval. (c)
Intensity contours during 190-200 minute interval.

gauge). The impacts of observed rainfall variability on runoff modelling at this
scale are discussed in Section 6.3.3.1.

6.2.2 Observed Spatial and Temporal Characteristics of Walnut Guich
Soil Moisture

In Walnut Guich, soil moisture observations were made by in-situ gravimetric
sampling, resistance sensors, and Time Domain Reflectometry (TDR) sensors, as
well as by microwave remote sensing. During Monsoon *90, three replicate gravi-
metric surface soil moisture samples were collected daily at the eight Metflux sites
(Schmugge et al., 1994). These were converted to volumetric soil moisture using
bulk density measurements made at each site. The only continuous soil moisture
measurements made during Monsoon 90 were those made with resistance sen-
sors (Kustas and Goodrich, 1994). They were placed at 2.5c¢cm and 5cm below
the surface at all eight Metflux sites. These sensors are generally difficult to
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Figure 6.7. Contour map of the rainfall depth for the storm of August 12, 1990 (interpolation by
isotropic kriging). Storm duration is 4 hours 42 minutes with about 75 % of the rain falling in 26
minutes.

calibrate and tend to drift. Therefore, following the recommendation of Stannard
et al. (1994), the resistance data were calibrated against the gravimetric samples
and then used to interpolate gravimetric data to each model time step. TDR
measurements were made at daily intervals and at multiple depths down to
0.5m at two of the Metflux sites (Kustas and Goodrich, 1994).

Engman (1991) described NASA’s 21 cm wavelength (1.42 GHz), passive
microwave Push Broom Microwave Radiometer (PBMR) instrument as “‘a
mature and reliable instrument with a good history of soil moisture measure-
ments”. This approach relies on the large dielectric contrast between water and
dry soil at long (> 10cm) microwave wavelengths that causes the soil’s emis-
sivity to be a function primarily of moisture content. Vegetation can reduce the
range of microwave brightness variation, totally obscuring the soil moisture
signal if it is present in sufficiently large amounts. Fortunately this remote-
sensing technique works well because Walnut Gulch has minimal vegetation
(Schmugge et al., 1994).

During the Monsoon ’90 field campaign (July 23 to August 10, 1990), the
PBMR instrument was flown on board the National Aeronautics and Space
Administration (NASA) C-130 aircraft. Six days (July, 31 August 2, 4, 5, 8
and 9, 1990) of microwave brightness temperature were collected over an 8 x
20km area in the northeastern portion of the catchment (Schmugge et al.,
1994). The period was very dry prior to the first flight, which was followed
by Scm of rain falling over most of the study area on August 1, 1990. This
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produced a significant decrease in brightness temperature (50 to 60K) on
August 2, 1990. The successive flights on August 4, 5, 8, and 9, 1990 showed
the effects of some smaller rain storms and drydown of the area. A strong
east-west spatial pattern is also evident and is strongly correlated to the
observed soil and vegetation gradients. The changes in brightness temperature
at six of the eight Metflux sites (Figure 6.1b) were well correlated with rain-
fall (R*> > 0.9) and in-situ soil moisture (R* =0.8) (Schmugge et al., 1994).
The linear relationships established between microwave brightness tempera-
ture and gravimetric soil moisture at each Metflux site by Schmugge et al.
(1994) were used with an inverse distance weighting scheme to invert micro-
wave brightness temperature to soil moisture (Figure 6.8) (Houser et al,
1998).

The PBMR data have been analysed using geostatistical methods (see Chapter
2). The analysis also showed that the correlation structure varies with time. The
July 31, 1990 PBMR observations, taken during dry conditions, show little spa-
tial correlation, i.e. there is only very short range correlation probably due to
random pattern of surface properties. One day after the large precipitation event
on August 1, 1990, the variogram changes to linear with a very small nugget and
a range beyond the observation area (15 km), i.e. the storm pattern imposes a
large-scale pattern on the brightness temperature. Three days after the August 1,
1990 storm, a range of about 3.5km becomes apparent, that is, as the surface
dries, the scale of correlation decreases. Eight days after the storm, some spatial
structure is still evident in the PBMR variogram but there are also significant
random components in the pattern (Houser et al., 1998), i.e. the brightness
temperature pattern imposed by the storm is disappearing and the random pat-
tern of surface properties is dominating again.

A multispectral scanner was also flown on NASA’s C-130 aircraft during the
Monsoon *90 field experiment. Using the NS001 thermal band (10.9-12.3 um), in
conjunction with a radiative transfer algorithm (LOWTRAN 7) that corrected
for atmospheric effects on the signal, surface temperature distributions were
derived (Figure 6.8) (Humes et al., 1997). The image on August 1, 1990 shows
areas of low temperatures corresponding to isolated cumulus clouds. There are
also clear discontinuities between the two flight lines, which are attributed to the
time difference in data acquisition (see Humes et al., 1997). It is ciear that the
surface temperature is strongly influenced by the surface soil moisture since it has
a high correlation with both the PBMR observations and the rainfall distribu-
tion, and also shows the effects of shading by topography and larger amounts of
vegetation in drainage lines.

In addition to the Monsoon 90 PBMR remotely sensed and ground-based
gravimetric measurements, a similar suite of measurements was carried out over
Walnut Gulch in 1991 using ESTAR, the airborne electronically steered thinned
array L-band radiometer (Jackson et al., 1993). As in 1990, a wide range of soil
moisture patterns and conditions were captured as flights were made before and
after several significant rainfall events. With the ground-based data as well as the
patterns of soil moisture acquired in 1990 by the PBMR instrument, the viability
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of the ESTAR instrument for soil moisture estimation was established by this
study (Jackson et al., 1993).

Soil moisture patterns in the WGEW, as observed by both in-situ and
remote sensing, are complex, with large variability at all scales. However, some
spatial structure is evident, arising from highly-localised convective
precipitation, drydown processes, and surface characteristics such as soil and
vegetation type.

6.2.3 Observed Spatial and Temporal Characteristics of Walnut Gulch
Runoff

The interactions of rainfall patterns and antecedent soil moisture patterns will
of course play a role in determining patterns of runoff generation. The nested
structure of the runoff observation network within the WGEW affords an oppor-
tunity to examine spatial runoff patterns to some degree. In Figure 6.9 the runoff
per unit area for each of the gauged catchments resulting from the August 1, 1990
storm is illustrated as a circle at the outlet of each gauged catchment whose size is
proportional to the runoff magnitude. As expected, runoff was generated in
regions of high rainfall. Sufficient runoff was generated from this event so that
the flow was able to traverse approximately 15km of dry ephemeral channel and
reach the overall catchment outlet. While many of the catchments produced no
runoff from the August 1, 1990 event, a more regular pattern of runoff distribu-
tion is observed for a ten year average (1969-1979). The general trend apparent
in this data is a reduction in mean annual runoff per unit area with increasing
drainage area.

These trends are consistent with the ephemeral semi-arid nature of the catch-
ment where runoff is not augmented by ground water inflows. Without a satu-
rated channel system, the dry loose alluvium present in the vast majority of the
larger channels is able to absorb a significant volume of surface runoff.
Depending on the location of rainfall, these channel transmission losses can
also significantly impact peak runoff rates (Renard et al., 1993). An example

Main Channel

O No Data

® .02mm
Subwatershed
Boundary
. 5 mm

5km

Figure 6.9. Runoff volumes and rainfall depths on Walnut Gulch from the storm of August 1, 1990.

Contour Interval = 5 mm
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of the impacts of channel transmission losses on runoff volume and peak runoff
rate is illustrated in Figure 6.10 for the event of August 27, 1982. This figure
depicts the storm isohyets and the hydrographs at flumes 6, 2, and 1. Because the
rainfall is isolated above these flumes the change in hydrograph runoff volume
and peak rate is solely attributed to transmission losses.

Channel transmission losses effectively decrease the correlation between rain-
fall and upland soil moisture patterns, and observed runoff. In the extreme case,
all locally generated runoff may infiltrate into the channels. In this case any
connection between rainfall and soil moisture patterns is severed downstream
of the terminal location of the runoff front. Goodrich et al. (1997) concluded that
explicit treatment of channel transmission losses is required for modelling catch-
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Figure 6.10. Storm total isohyets and hydrographs from flumes 6, 2, and 1 for event of August 27,
1982.
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ments larger than roughly 40 hectares. In the case where two runoff events occur
over the same reach of channel within a short period of time (< 3 days), runoff
from the second event can be greatly enhanced as transmission losses are largely
satisfied by the prior event.

6.3 MODELLING AND SPATIAL INFERENCES

6.3.1 Precipitation Modelling

Spatial precipitation modelling efforts posed and tested using WGEW data
were initiated with extensions from point observations to area (Osborn, 1977);
depth-area (Osborn and Lane, 1972); and, point-area frequency conversions
(Osborn and Lane, 1981). These studies provide methods for areal distribution
of rainfall uniformly without internal storm pattern information. Several sto-
chastic models have also been developed to predict the spatial and temporal
distribution of thunderstorm rainfall (Osborn et al., 1980; Eagleson et al.,
1987; Islam et al., 1988; Jacobs et al., 1988). In general these models were able
to reproduce the main statistical features of rainfall patterns. However, model
stationarity assumptions limited model results as they were not able to describe
observed nonstationary storm behaviour.

While these models have some utility in predicting rainfall patterns that are
statistically similar to observations, the remotely sensed spatial patterns
(Section 6.2.2) have the potential to estimate observed spatial rainfall patterns
on an event basis. As noted in that section, Schmugge et al. (1994) found a high
correlation of change in brightness temperature between flight acquisition dates
and total inter-flight rainfall. The data from one set of PBMR flights in 1990
and two sets of ESTAR flights in 1991 are illustrated in Figure 6.11. As illu-
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Figure 6.11. Relationship between raingauge total and decrease in brightness temperature (ATB)
for three Walnut Gulch rainfall events. The lines are fitted exponential curves for the three events.
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strated in the figure, a simple exponential model describes the relationship quite
well. The respective R? values for this function are R> = 0.68, 0.83, and 0.79 for
July 31 to August 2, 1990 (labelled August 1, 1990), July 30 to August 1, 1991
(labelled 30 July 1991) and August 2 to August 3, 1991 (labelled 2 August 1991)
data. The variability in these relationships may be caused by differences in
within-storm rainfall intensity patterns, infiltration, or evapotranspiration.
The failure of the relationship above rainfall amounts of 30 mm is likely the
result of two factors. First, for high rainfall amounts generating runoff, a
portion of the rainfall is conveyed offsite and is concentrated in channels. In
this case the full rainfall amount does not infiltrate and increase local soil
moisture. The second factor has to do with the dynamic brightness temperature
range of the L-band radiometer. For sparse vegetation the sensitivity of bright-
ness temperature (TB) is about 2.5K per percent of soil moisture. The dynamic
range, given constant physical temperature, can be estimated by multiplying the
sensitivity by the soil moisture range. Observed ranges of soil moisture vary
from 18 % to almost 30 % depending on soil type. The corresponding dynamic
range would vary from roughly 45 to 75K.

The relationships illustrated in Figure 6.11 can be inverted to predict rainfall
patterns. This analysis was carried out by Jackson et al. (1993) and comparison
between observed rainfall patterns from the raingauge network and those pre-
dicted using the patterns of change in brightness temperature are illustrated for
the two events in 1991 in Figure 6.12. The patterns predicted using changes in
brightness temperature are very similar to patterns obtained from interpolating
rainfall amounts from the dense raingauge network. As Jackson et al. (1993)
note, for sparsely vegetated arid and semi-arid regions similar to Walnut
Gulch, these results suggest the potential of using the change i brightness tem-
perature method to estimate rainfall over large regions which de not have rain-
gauge networks, provided a precipitation-ATB relationship is available.

8.3.2 Soil Moisture Modelling

§.3.2.1 Description of TOPLATS and its Application to Walnut Gulch

The TOPMODEL-based Land Atmosphere Transfer Scheme (TOPLATS)
(Famiglietti and Wood, 1994) predicts spatial distributions of land surface run-
off, energy fluxes, and soil moisture dynamics given atmospheric, soil, and vege-
tation information. It incorporates simple representations of atmospheric
forcing, vertical soil moisture transport, plant-controlled transpiration, intercep-
tion, evaporation, infiltration, surface runcft, and sensible and ground heat
fluxes. The model incorporates a diurnal cycle and is driven with standard
meteorological data with an hourly time step, this being considered sufficient
to resolve the dynamics of the land-atmosphere interaction. The subsurface
unsaturated soil column is partitioned into three layers, with the upper layer
corresponding to the microwave remote sensing penetration depth, the under-
lying root zone extending from the bottom of the surface zone to the depth of
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Figure 6.12. Rainfall maps for the Walnut Gulch study area. The isohyetal contour lines were
derived from the observations made by the WGEW raingauge network. The images of predicted
rainfall were obtained from the pre-storm to post-storm change in brightness temperature and the
exponential models illustrated in Figure 6.11. All values are in mm. Top: July 30, 1991 event;
Bottom: August 2, 1991 event. (Modified from Jackson et al., 1993.)

plant roots, and the transmission zone extending from the bottom of the root
zone to the top of the saturated soil.

The WGEW was modelled using TOPLATS in a spatially distributed manner
at a 40m resolution from July 23, 1990 to August 16, 1990. The TOPLATS
parameterisation was largely based on observations made during Monsoon *90
(Kustas and Goodrich, 1994). However, eight model parameters were not
observed and had to be estimated or specified by model calibration (Houser et
al., 2000).

6.3.2.2 Spatially Distributed Model Forcing and Parameters

The multiquadric precipitation interpolation algorithm (Syed, 1994) was used
to produce spatially distributed precipitation values for the entire model domain
from the available raingauge data. All other meteorological forcing (air tempera-
ture, wind speed, humidity, and radiation) were assumed to be spatially constant
because observations from the eight Metflux stations contain insufficient infor-
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mation to derive spatially-variable meteorological forcing for the approximately
ninety thousand TOPLATS model grid points, and an eight-site average
decreases the impact of highly local meteorologic signals (i.e., solar radiation
measurement errors due to vegetation and topographic shading) on larger-area
simulation. Therefore, meteorological forcing was derived from averaging obser-
vations at the eight Metflux stations in place during the experiment (Kustas and
Goodrich, 1994).

It is thought that optimal implementation of a distributed hydrological model
requires the specification of spatial distributions of soil and vegetation para-
meters. Therefore, the required TOPLATS spatially variable parameters were
estimated using GIS maps of Walnut Gulch vegetation and soils; several exam-
ples of these spatially variable parameters are shown in Figure 6.13 and Houser
et al. (2000). Spatially distributed information on minimum stomatal resistance,
root depth, leaf area index, residual soil moisture, saturated soil moisture, satu-
rated hydraulic conductivity, percent clay, percent sand, effective porosity, and
topographic index at Walnut Gulch were used as parameters in the TOPLATS to
make spatially distributed predictions. All other parameters were held spatially
constant. The three TOPLATS soil moisture layers were initialised on July 23,
1990 based on catchment average in-situ TDR soil moisture observations.

The simulated spatial patterns of surface soil moisture at 12:00pm on August
7, 1990, using these spatially variable parameters, are shown in Figure 6.13. For
comparison, the results for a simulation using spatially constant soil and vegeta-
tion parameters are also shown. The spatially variable soil and vegetation para-
meters have a large impact on the spatial patterns of the simulation, which
appear unrealistic because they compare poorly with observed PBMR surface
soil moisture. A series of sensitivity simulations was performed to determine
which subset of spatial parameters contribute most to these patterns. The use
of spatially variable vegetation parameters has much less effect on predictions as
compared to soil parameters; it is likely that at the WGEW soil has more control
of soil moisture processes than vegetation. The parameter specifying saturated
soil moisture has the most influence on simulated spatial patterns, while those
which specify the percentages of sand and clay, the saturated hydraulic conduc-
tivity, and the residual soil moisture have a more moderate influence. Finally, the
spatially variable topographic index has very little influence on the simulations
because the process of water table interaction with the surface does not operate at
the WGEW.

The artefact of enhanced spatial soil and vegetation polygons apparent in
the simulations is probably not a simple mis-specification of parameter values,
rather it is an artefact of discretely assigning a single set of parameters (which
in reality would display high variability, see for example Chapter 10, Figure
10.4) to large areas. A more appropriate specification of spatial parameters
would be continuous, as obtained with remote sensing. It might be possible
to develop a smoothing algorithm that would use the soil polygon information
to approximate continuously varying, spatially distributed parameters. Because
the simulations using spatially constant vegetation and soil parameters compare
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a) Topographic Index b) 1 August 1990 Rainfall
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c) Leaf Area Index d) Saturated Soil Moisture
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e) 7 August 1990 TOPLATS Surface Soil Moisture(%) f) 7 August 1990 TOPLATS Surface Soil Moisture(%)
using Spatially Constant Parameters using Spatially Variable Parameters
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Figure 6.13. Spatially distributed topographic index (a); precipitation (b); vegetation (c); and soils
(d); for the Walnut Gulch Experimental Watershed. TOPLATS spatial predictions of surface soil
moisture at 12:00pm on August 7 1990 using spatially constant (e) and spatially variable (f) soils and
vegetation parameters (all simulations use spatially variable topography and precipitation). Push
Broom Microwave Radiometer (PBMR) derived soil moisture for August 5, 1990 and August 9,
1990 (Houser, 1996). The addition of spatially variable soils and vegetation produces unrealistic
polygon artefacts in the simulation.

well to the PBMR patterns, soil and vegetation parameters were assumed spa-
tially constant across the catchment in subsequent studies, leaving precipitation
as the dominant spatially varying entity (topographic index is also variable, but
with little effect).
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6.3.2.3 Four-Dimensional Data Assimilation for Enhanced Soil Moisture
Pattern Identification

Errors in the structure, parameters, and forcing of TOPLATS can never be
fully rectified, and therefore lead to prediction errors. However, observations of
model states or storages, distributed in time and space, can be used to correct the
trajectory of the model, and reduce its prediction errors. Charney et al. (1969)
first suggested combining current and past data in an explicit dynamical model,
using the model’s prognostic equations to provide time continuity and dynamic
coupling amongst the fields. This concept has evolved into a family of techniques
(i.c., direct insertion, Newtonian nudging, optimal interpolation, variational,
Kalman filtering, etc.) known as Four-Dimensional Data Assimilation (4DDA).
TOPLATS was modified to allow the assimilation of soil moisture and other state
variables. The following description assumes assimilation of observed surface soil
moisture, 6,, derived from the PBMR (as shown in Figure 6.8). However, with
modifications specific to the state variable, the following description can be used
to assimilate other variables, such as surface temperature.

A control and a direct insertion simulation are used as the basis for evaluating
the data assimilation runs. A control simulation (i.e., the simulation without data
assimilation) can be considered an extreme case, in which it is assumed that the
observations contain no information. The other extreme is direct insertion, where
it is assumed that the model contains no information. In this case, the model
prediction of surface soil moisture, 6., is replaced with a PBMR soil moisture
observation, 6,, whenever an observation is available. With direct insertion, no
data are assimilated outside the four-dimensional region (one time and three
space dimensions) where observations are available; therefore, any advection
of information is only accomplished via the model physics in subsequent
model integrations.

In a second data assimilation technique, which is termed ‘“‘statistical correc-
tion”, the mean and standard deviation of the surface soil moisture states in the
model are adjusted to match the mean and standard deviation of the observa-
tions. This method assumes that the statistics of the observations are perfect,
which is arguably more reasonable than assuming that each observation is in
itself perfect, as in direct insertion. It also assumes that the patterns predicted by
the model are correct but that the predicted surface soil moisture statistics con-
tain bias. As with direct insertion, advection of information into deeper soil
layers is accomplished solely through the model physics.

A third data assimilation technique called Newtonian nudging relaxes the
model state towards the observed state by adding an artificial tendency term
into the prognostic equations which is proportional to the difference between
the two states. These small forcing terms gradually correct the model fields which
are assumed to remain in approximate equilibrium at each time step (Stauffer
and Seaman, 1990). In this way, the model can be nudged toward observations
within a certain distance, and during a period of time, around the observations.
Newtonian nudging is implemented as follows:
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% =F(0,x, 1)+ Gg- Wy(x, 1) - gg(x) - (¢, —6) (6.1)
The model’s forcing terms are represented by F, 6, is the PBMR surface soil
moisture observation at the model grid, and ¢ is time. G, is the nudging factor
which determines the magnitude of the nudging term relative to all other model
processes, while the four-dimensional weighting function, W, specifies its spatial
and temporal variation. The analysis quality factor, sy, varies between 0 and 1
and is based on the quality and distribution of the observations. Equation (6.1)
was implemented for all three TOPLATS soil layers.

The Newtonian nudging weighting function, W, at time, ¢, and location, x, for
each observation, /, is a combination of the horizontal weighting function, w,,
the vertical weighting function, w,, and the temporal weighting function, w,, thus:

Wi(x, 1) =wy, -w,-w, (6.2)

The horizontal weighting function can be defined by a Cressman-type hor-
izontal weighting function, as:

R - D’
Wy =0, D>R (6.4)

where R is the radius of influence, and D is the distance from the i observation
to the gridpoint. The vertical weighting function, w., is also a distance weighting
function, following Seaman (1990); thus:

w,=1- wa |Zons — 2| = R, (65)
R,
w, =0, |Zops — 2| > R, (6.6)

where R, is the vertical radius of influence, and z,;, is the vertical position of the
i™ observation. The temporal weighting function is defined as follows:

w, =1, It — 1y <£ (6.7)

w, =0, t—t) >t (6.8)
(t—1t—1t)) T

W= o, g Sli-nl<T (6.9)

where 7 is the model-relative time, #, is the model-relative time of the i™ observa-
tion, and 7 is the half-period of a predetermined observation influencing time
window.

The final data assimilation method explored here is statistical or optimal
interpolation, which is a minimum variance method that is closely related to
kriging. Statistical interpolation was implemented in all three TOPLATS soil
layers as follows (Daley, 1991):
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K
04(r) = 05(r) + Y Wi+ [00(r) — 05(11)] (6.10)
k=1

where K is the number of observation points, Wy is the weight function, 6(r) is
the soil moisture analysis variable, r is the three-dimensional spatial coordinates,
6,4(r;) is the analysed value of @ at the analysis gridpoint r;, 8(r;) is the back-
ground or first-guess value of 6 at r;, and 6p(r) and 65(r;) are the observed and
background values, respectively, at the observation station ry.

The weight function, Wy, is determined by least-squares minimisation of
equation (6.10), with the assumptions that 0z(ry), 65(r;), and 6,(r) are unbiased,
that there is no correlation between the model and observation error, that the
error correlations are homogeneous, isotropic, and time invariant, and that the
background error correlation, pg, is horizontally and vertically separable (i.e.,

P8 = PexyPs:) (Daley, 1991), thus:

K
Y Wi [Paey (r=10) + 8600 - (11— 1)) = Py (ri = 12) - iz - (21— 21)

=1
(6.11)

where po is the observation error correlation matrix, pg,, is the background
horizontal error correlation matrix, and pg, is the vertical error correlation
matrix. pp and pg were estimated using PBMR observations and corresponding
model predictions (Houser et al., 1998). The system of linear equations given in
equation (6.11) was solved using a Cholesky Decomposition (Press et al., 1986).
Each PBMR image contains over 35,000 observations, which requires solving a
system of 35,000 linear equations for each model grid point each time an obser-
vation was available. Clearly the computational resources needed for this task are
unreasonable; hence, a simplified method was required. This was accomplished
by (a) using a random subset of 100 PBMR observations, and (b) by using 100
“super-observations”, these being approximately 1 km®? PBMR soil moisture
averages.

Catchment average time series of surface and root zone soil moisture for the
various assimilations using all of the available PBMR observations are shown in
Figure 6.14. All of the data assimilation methods significantly and similarly
improved the simulation of surface zone soil moisture, with the exception of
direct insertion, which was unable to impose an entire catchment correction
and was therefore unable to adjust the model trajectory sufficiently. Nudging
had the clear advantage of providing smoother temporal adjustments. All simu-
lations produced identical surface zone soil moisture simulations after the storm
on August 12, 1990 because this storm saturated the surface zone causing all past
surface zone forcing to be forgotten, but this process does not occur in the
model’s root zone where memory of past assimilation is preserved. This sequence
of events is not unrealistic; rather, it suggests a time interval at which soil moist-
ure observations are needed for data assimilation, this interval being less than or
equal to the time between storm events. In the root zone, the simulated time
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Figure 6.14. Comparison of TOPLATS catchment average surface and root zone soil moisture time
series for various assimilation studies. (From Houser et al., 1998; reproduced with permission.)

series fell into two distinct groups corresponding to methods with and without
the capability for vertical assimilation of information. Among the latter group,
nudging assimilation performs a more conservative correction compared to sta-
tistical interpolation. None of the methods produced time series that matched the
in-situ root zone observations. However, it is important to bear in mind that with
only two in-situ root zone observations, the root zone spatial variability is not
adequately sampled.

The control run deviates most significantly from observations near the end of
the drydown on August 7, 1990, so this time is selected to demonstrate the
intercomparison between assimilation methods. It should be noted that four
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PBMR images were assimilated prior to this time, with the last assimilation
occurring on August 5, 1990. The spatial patterns of model-predicted surface
soil moisture for the different assimilation methods are shown in Figure 6.15.
The best spatial patterns are considered to be those without discontinuity at the
edge of the observed area, without numerical artefacts, and with a similar nature
to those produced by the model without assimilation.

Simple updating is unable to advect information horizontally, giving rise to an
undesirable discontinuity in the calculated soil moisture field and preserving all the
observational noise. Updating also is able only to impact root zone soil moisture
very slightly through model physics and preserves the discontinuity in this zone.
Data assimilation via statistical corrections is able to adjust the entire surface soil
moisture field to observed levels. It produces a soil moisture spatial field that does
not contain discontinuities or retain the observed spatial pattern. Newtonian
nudging also produces a spatial field of soil moisture without discontinuities.

Both the random and the super-observation statistical interpolation
approaches result in an undesirable linear streaking feature that extends outward
from the observed area that is an artefact of numerical procedures, or may be the
result of a violation of the statistical interpolation unbiased background assump-
tion. Statistical interpolation has the advantage of using error correlation func-
tions based on the characteristics of the observations and the model predictions.
However, it also has the disadvantage of being excessively demanding on com-
puter resources when addressed as a fully posed problem with remotely sensed
data, and it lacks the benefits of temporal assimilation.

There is a clear tradeoff between using a complex data assimilation technique
and the ability to use all the available data due to the large computational
burdens of performing data assimilation at fine resolutions using dense data
sets. As the complexity of the data assimilation model increases, the size of the
assimilated data set needs to decrease in order to maintain computational feasi-
bility. Complex methods have the ability to extract more useful information from
assimilated data, but simpler methods use more of the data to extract similar
information. This tradeoff allows simpler assimilation techniques to perform
almost as well as complex techniques. In general, this argument suggests the
use of assimilation methods that are of moderate complexity, that are sound
and computationally efficient, but use as much data as possible. If the informa-
tion in the data can be efficiently compressed or filtered before its use in data
assimilation, and if the mathematical solvers can be further optimised, it may be
reasonable to use larger data sets in complex data assimilation strategies.

6.3.3 Runoff Modelling

The range of runoff models applied to, or developed with, Walnut Gulch data
varies widely in both complexity and type. Early models included those based on
linear regression at annual time scales (Diskin, 1970) and stochastic models for
estimating the start of the runoff season, the number of runoff events per season,
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time interval between events, beginning event time, runoff volume, and peak
discharge (Diskin and Lane, 1972; Lane and Renard, 1972). More geometrically
detailed recent work by Syed (1994) further reinforced the importance of spatial
distributions of both rainfall and pre-storm soil moisture availability on catch-
ment runoff response using the 302 storm events discussed earlier with regression
analyses. Simple measures of spatial characteristics of rainfall considered indivi-
dually did not show a very high degree of correlation with either runoff volume
or peak rate of runoff for WG1 (the whole experimental catchment). The highest
correlation, R?, was found to be between precipitation volume and runoff volume
(R*=10.59) and precipitation volume and peak rate of runoff (R* = 0.53).
However, when only the precipitation volume of the storm core
(intensities > 25 mm/hr) was considered, the coefficients of correlation increased
to 0.71 and 0.76, respectively. This clearly illustrates that the high-intensity por-
tions of the storm core are directly related to runoff production.

A large number of other models have also utilised data from Walnut Gulch
for development or validation. These include CREAMS (Knisel, 1980); SPUR
(Lane, 1983a,b; Renard et al., 1993); ARDBSN (Stone et al., 1986); WEPP
(Lopes et al., 1989); and CELMODS (Karnieli et al., 1994). A particularly well
adapted model for use in arid and semi-arid regions where transmission losses are
important was developed by Lane (1982).

6.3.3.1 Description of KINEROS and Its Application to Walnut Guich

KINEROS is a physically based, event-oriented kinematic runoff and erosion
model (Smith et al., 1995) that was also developed and tested using WGEW data.
In this model, catchments are represented by discretising contributing areas into
a cascade of one-dimensional overland flow and channel elements using topo-
graphic information. The infiltration component is based on the simplification of
the Richard’s equation posed by Smith and Parlange (1978):

oF/B

fc:KSm; and B=G"&-(Spax —ST) (6.12)

where /. is the infiltration capacity (L/T), K; is the saturated hydraulic conduc-
tivity (L/T), F is the infiltrated water (L), B is the saturation deficit (L), G is the
effective net capillary drive (L), ¢ is the porosity, Sy, is the maximum relative
fillable porosity, and ST is the initial relative soil saturation. Runoff generated by
infiltration excess is routed interactively using the kinematic wave equations for
overland flow and channel flow, respectively stated as:
m

?)—?Jr aaaxh =r{t) — fdx,1); and %—Ij + %ECA) =q,(t) — fo,(x, 1) (6.13)
where £ is the mean overland flow depth (L), ¢ is time, x is the distance along the
slope (L), ais 1.49 $'2/n, S is the slope, n is Manning’s roughness coefficient, m
is 5/3, r{(#) is the rainfall rate (L/T), fi(x, ) is the infiltration rate (L/T), A is the
channel cross-sectional area of flow (L?), Q(A4) is the channel discharge as a
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function of area (L*/T), ¢,(?) is the net lateral inflow per unit length of channel
(L?/T), and f.(x, t) is the net channel infiltration per unit length of channel
(L?/T). These equations, and those for erosion and sediment transport, are
solved using a four-point implicit finite difference method (Smith et al., 1995).

Unlike excess routing, interactive routing implies that infiltration and runoff
are computed at each finite difference node using rainfall, upstream inflow, and
current degree of soil saturation. This feature is particularly important for accu-
rate treatment of transmission losses with flow down dry channels. To explicitly
account for space-time variations in rainfall patterns the model computes, for
each overland flow element, the rainfall intensities at the element centroid as a
linear combination of intensities at the three nearest gauges forming a piece-wise
planar approximation of the rainfall field over the catchment (Goodrich, 1990).
The interpolated centroid intensity is applied uniformly over that individual
model element. To represent small-scale variability of infiltration that is beyond
the scale of discretisation (sub-metre to metre), the model assumes the saturated
hydraulic conductivity (K;) within an overland flow element varies log-normally
(Woolhiser and Goodrich, 1988; Smith et al., 1990) (i.e., it uses a sub-grid dis-
tribution function parameterisation as discussed in Chapter 3).

Validation of the KINEROS model is reported by Goodrich (1990), Goodrich
et al. (1993), and Smith et al., (1995) on four Walnut Gulch subcatchments
(Lucky Hills (LH)-106, 0.4 ha; LH-102, 1.4 ha; LH-104, 4.4 ha; and WG-11,
631 ha). For the Lucky Hills catchment, rainfall inputs were obtained from two
raingauges, and for WG-11 ten raingauges were used. The validation process
consisted of a split sample test (Chapter 3, p.76 and Chapter 13, p. 340) with
the calibration phase using approximately ten observed events on each catchment
and a validation phase in which an independent set of roughly twenty runoff
events were used to assess model performance using the coefficient of efficiency,
E (Nash and Sutcliffe, 1970) (Table 6.1). The model was calibrated by adjusting

Table 6.1. KINEROS calibration and verification coefficient of efficiency for runoff volume and
peak discharge

Calibration efficiency Verification efficiency Maximum no.

of model

Basin Volume Peak Volume Peak elements

1 2 3 1 2 3 1 2 1 2

LH-6 098 0.97 0.81 095 094 0.86 0.98 0.98 0.79 0.77 30

LH-2 0.97 0.88 0.88 0.97 0.93 0.93 0.93 0.92 0.93 0.89 68

LH-4 0.97 0.96 0.89 0.98 0.88 0.88 0.99 0.99 0.92 0.96 235

WG-11  0.86 0.84 0.49 0.16 243

1 — two raingauges in Lucky Hills, ten raingauges in WG-11, using the maximum number of overland

and channel flow elements

2 — two raingauges, one overland flow element, no channel elements

3 — one raingauge, maximum number of overland and channel flow elements
* — If the model predicts observed runoff with perfection, E = 1. If E < 0, the model’s predictive

power is worse than simply using the average of observed values.
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three parameters: basin-wide multipliers on n, K, and CV,. The multipliers scale
the model element input parameters while maintaining relative differences based
on field observations. Using this approach, the overall dimension of the adjus-
table parameter space remains small (see Chapter 13, pp. 342-3 for a discussion
of this approach). By using the nested catchments LH-106 and LH-102 (see
Figure 6.1) within catchment LH-104, internal assessment for the model’s ability
to reproduce runoff patterns was also possible.

As judged by the efficiency statistics, the model provides remarkably good
predictions of runoff volume and peak response for the Lucky Hills catchments.
An overall assessment of internal model accuracy using the nested catchments
gives an £ of 0.91 and 0.86 for LH-106 runoff volume and peak rate, respectively,
and comparable LH-102 E values of 0.96 and 0.97. These high values of E
obtained by using LH-104 multipliers for the internal catchments suggest a
good deal of internal model accuracy. On WGI1 the model performed reason-
ably well for the calibration event set, but E dropped off considerably for the
verification event set due to overprediction of the two largest events in the
verification set.

While we can represent a wide range of geometric catchment complexity, it is
not clear just how much is required to best represent hydrological response. Does
the use of a great number of model elements, and therefore a great amount of
distributed input, actually improve the simulations or can simpler geometries do
just as well? Which components can be simplified and which must have their
spatial detail preserved? Geometric model complexity and catchment heteroge-
neity are closely related. More complex model representations (i.e., more over-
land flow and channel model elements) more closely preserve the catchment
patterns of topography and channel networks. Large-scale orthophoto maps
were used to discretise the catchments into a large number of elements, and a
geometric simplification procedure based on stream order reduction was devel-
oped (Goodrich, 1990). Successive levels of reduction in model complexity were
then carried out to assess the impacts of simplification on simulated runoff
response. It was found that adequate representation of concentrated channel
routing imposed a fundamental limit on simplification because concentrated
channel flow can only be converted to overland flow with a distortion of the
hydraulic roughness to a certain degree. For catchments greater than 1 hectare it
was found that an average area for first-order channels should be roughly
10-15% of the total catchment area (Goodrich, 1990).

The relative impact of geometric versus rainfall pattern simplification was also
assessed. The error introduced when the model was simplified to a single over-
land flow plane with two raingauges as input was less than or equal to the error
when one raingauge was used in the Lucky Hills catchments as input to a model
with the maximum number of elements corresponding to the most complex geo-
metric catchment representation (see Table 6.1). This result was even more pro-
nounced in the larger WG-11 catchment when one versus ten raingauges was
used (Goodrich, 1990). Therefore, unless there are major differences in land use,
basin discretisation should not exceed the ability to resolve input rainfall variability.
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The uncertainty in rainfall input due to small- and large-scale spatial variability
suggests that the confidence in the calibration can only be equal to or less than the
certainty of rainfall input data.

Faurés et al. (1995) assessed the impacts of Walnut Gulch rainfall variability
on runoff simulations in the LH-104 catchment using KINEROS (Figure 6.16).
Data from combinations of five recording raingauges were input into
KINEROS for the event of August 3, 1990. These simulations produced a
range of variation for simulated peak runoff rate and runoff volume of
15mm/hr (CV = 38.8%) and 2.6 mm (CV = 40.0 %), respectively. The varia-
bility in runoff model results emphasises the importance of adequately sampling
the spatial distribution of rainfall in the catchment. It was also found that
model output variation as a function of the number of raingauges was generally
greater for small events than for large ones. This reflects the difficulty of
modelling small runoff events when runoff to rainfall ratios are low and mea-
surement error may be a larger relative percentage of the input rainfall signal.
This would be expected whenever relative infiltration and rainfall rates are
close, resulting in small runoff ratios. In this case, the model becomes very
sensitive to both input and parameter patterns. If the uniform, single raingauge
assumption were used during parameter fitting in spite of spatial variability
comparable to that observed here, the variation in simulated hydrographs
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Figure 6.16. Simulated hydrographs for five combinations of one, two, three, and four raingauges in
Lucky Hills-104 (August 3, 1990 event).
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could be mistakenly assigned to variability of other model parameters or errors
in the model structure.

Finally, the relative importance of PBMR derived remotely sensed soil moist-
ure patterns (Section 6.2.2) on runoff simulations on the larger WG-11 catchment
is examined. KINEROS is very sensitive to the estimate of the pre-storm initial
relative soil saturation, S (Goodrich, 1990). An average SI was derived for each
of 256 model elements (3.4 ha mean overland flow element area) from five PBMR
overflights, three of which are illustrated as volumetric soil moisture in Figure 6.8
(Goodrich et al., 1994). An increase in the variability of S/ with increasing mean
ST was observed; however, the highest mean S7 observed was 0.45 on a zero to
one scale, so the generally postulated decrease in variability as S7 approaches one
was not observed (Goodrich et al., 1994). Attaining a very high average ST may
not be realised given the rapid drainage of the coarse soils of WG-11 and the
difficulty of obtaining an aircraft overflight immediately following an intense
convective thunderstorm.

In order to assess the relative importance of variability in initial soil saturation
and variability in precipitation, a simulation study was performed using different
combinations of observed patterns in soil saturation (from PBMR data) and
precipitation (from multiple raingauges). The impact of simplifying the represen-
tation of initial soil saturation was assessed by comparing the highly complex S
pattern (256 ST values) to a single catchment average SI representation (Figure
6.17). For rainfall simplification, the case of using observations from ten rain-
gauges in and near the catchment is compared to using rainfall from a single
central raingauge (uniform rainfall). The rationale for using average SI but a
single raingauge (rather than average of the ten, which would be less variable) is
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Figure 6.17. Impacts of PBMR initial soil moisture (SI) averaging and rainfall representation on
simulated peak runoff rate for various storm—SI combinations.
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that average SI data may become widely available from low spatial resolution
sensors, while only single raingauges are usually available and applied uniformly
to large areas.

The comparisons were made for three PBMR derived sets of ST (August 2, 4,
and 5, 1990) and for five storms, two of which occurred during the period of
PBMR overflights and three historical storms that had relatively small runoff
volumes and distinct rainfall patterns. The October 21, 1978 event was relatively
uniform, the June 24, 1986 event had high rainfall gradients in the upper central
portion of WG11, and the August 10, 1986 event produced steep precipitation
gradients in the lower portion of WG11. The magnitude of these storm/runoff
events means that the influence of SI on runoff generation is large because the
rainfall depth is of the same order as the soil water deficit (Goodrich, 1990). The
absolute percentage change in peak runoff rate ranged from 0.5 % to 12.3 % for
ST averaging and over 400 % for rainfall simplification. Based on these results, a
simple basin average of remotely derived SI estimates at the medium catchment
scale (6.31 km?), with a greater knowledge of spatial rainfall patterns, appears to
be adequate for runoff simulation. This implies that the relatively coarse resolu-
tion of potential space-based microwave instruments may be entirely adequate
for defining distributed pre-storm initial soil water content conditions for rain-
fall-runoff modelling in semi-arid regions, provided ground truth data are avail-
able (Goodrich et al., 1994).

6.4 CONCLUSIONS

Our understanding of the complex hydrological processes active in semi-arid
regions has been greatly enhanced through numerous studies of rainfall, runoff,
and soil moisture patterns at the USDA-ARS Walnut Gulch Experimental
Watershed in southeastern Arizona. Extremes in rainfall and temperature in
this region lead to great spatial heterogeneity in soil hydrological processes.
Accurate spatial and temporal knowledge of precipitation totals and intensity
were found to be the most important factor in determining hydrologic catchment
patterns in this region. Convective rainfall is highly localised with observations
indicating that rainfall from raingauges six or more kilometres apart can be
considered independent. Significant rainfall variability is also apparent over
scales of several hundred metres as rainfall gradients ranging from 0.28 to
2.48mm/100m were observed over a 4.4 hectare catchment. This suggests that
the typical uniform rainfall assumption is invalid at the 5 hectare scale in this or
similar environments. Soil moisture patterns were profoundly impacted by pre-
cipitation. Remote sensing techniques also show potential for indirect estimation
of rainfall at ungauged catchments.

The correlation structure present in the PBMR derived soil moisture changes
as the surface dries following a rain storm. Storms impose large-scale correlation
which decreases as the soil dries and the random (small-scale) effects of surface
characteristics begin to control soil moisture variability.
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The techniques of data assimilation were successfully applied to obtain better
soil moisture estimates using a distributed model and remote sensing data.
Overall, the Newtonian nudging method has the most desirable features for remo-
tely sensed soil moisture data assimilation. It is the only true four-dimensional
data assimilation method used in this study, and it produces relatively continuous
soil moisture time series and reasonable spatial patterns. There is a clear tradeoff
between using a complex data assimilation technique and the ability to use all the
available data. The use of assimilation methods that are sound and computation-
ally efficient and use as much data as possible is preferred.

The relationships between storm size, location and pattern, and the scale and
geometry of the catchment are delicate and should be carefully considered when
interpreting or modelling hydrological processes. A critical process in this region
is ephemeral channel transmission losses. Spatially distributed models that expli-
citly treat runoff routing and channel abstractions are considered essential. This
is supported by good calibration and verification results of models with explicit
physically-based routing and infiltration components using the nested gauge
data.

The conclusions described here must be considered in the context of the semi-
arid Walnut Gulch environment. It should be reiterated that runoff is almost
exclusively generated via an infiltration excess mechanism and annual potential
evapotranspiration is roughly ten times greater than annual rainfall in this envir-
onment. In this influent environment, with annual runoff decreasing with increas-
ing catchment size, it was found that runoff response becomes more nonlinear
with increasing catchment size. Our increased understanding of this environment
would not have been possible without the long-term, spatially dense observations
made at the WGEW. We strongly encourage the continued operation and
improvement of this exceptional outdoor laboratory.
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